Intersection Control Study

Date: Friday, October 05, 2018
Project: ODOT | K19786 I-205: Stafford Rd to OR213 Corridor Widening and Abernethy Bridge Seismic Retrofit / Widening

To: Tom Hamstra, ODOT - PM
From: Steve Drahota, HDR - PM

Subject:	Intersection Control Study
	Conceptual Approval Request for Roundabout
	Oswego Highway No. 3 at I-205 Northbound Exit-Ramp (Hwy No. 3 at MP
	11.29 \& Hwy No. 64 at MP 1C 8.79)
	Clackamas County

1 Introduction

1.1 Purpose and Background

The purpose of this Intersection Control Study (ICS) is to provide documentation required for the Conceptual Design Approval of a roundabout proposed at the intersection of Oswego Highway (Oregon Route (OR) 43) and Interstate (I) 205 northbound exit-ramp as part of the "I-205: Stafford Road to OR213 Project", key\# 19786. An ICS is a formal comparison of intersection control alternatives, in this case, a traffic signal and a roundabout.

The project proposes to widen l-205 by adding a third travel lane in both directions between the Stafford Road and OR99E Interchanges, and adding a northbound auxiliary lane between the OR99E entrance ramp and OR213 exit-ramp. The project also includes widening and seismically retrofitting the Abernethy Bridge. At the OR43 Interchange, in order to conform to the widened Abernethy Bridge and improve the safety and operations of I-205, the existing northbound OR43 to northbound l-205 entrance ramp will be removed. This movement will be redirected to a reconstructed entrance loop, which currently only serves the southbound OR43 to northbound $\mathrm{l}-205$ movement. A roundabout is proposed to be constructed at the northbound ramp terminal. Figure 1 shows the proposed improvements at the OR43 Interchange.

Figure 1. I-205 at OR43 Interchange - Proposed Improvements

1.2 Site Location and Study Area

The intersection of OR43 at I-205 northbound exit-ramp is located in the southern section of West Linn. It is currently signalized. The I-205 southbound ramp terminal is located approximately 850 feet to the north. Willamette Falls Drive, a City minor arterial, approaches from the west to create a T intersection with OR43 approximately 270 feet south of the proposed intersection. The Willamette Falls Drive approach is under stop control. The study area also includes the signalized intersection of OR43 and McKillican Street, which is approximately 950 feet north of the I-205 southbound ramp terminal. A map showing the study area is provided in Figure 2.

Figure 2. Study Area - OR43 between McKillican Street and Willamette Falls Drive

2 Traffic Data

2.1 AADT, Truck Percentage, and Posted Speed

I-205 serves as a major north-south regional transportation facility and the primary route to the East Portland metropolitan area. OR43 functions as the major north-south arterial through West Linn and includes turn lanes at the I-205 southbound and northbound ramp terminals as well as at Willamette Falls Drive and McKillican Street. Table 1 summarizes the roadway characteristics of I-205 and OR43 in the study area.

Table 1. Roadway Characteristics

Highway	Milepoint	Segment	Number of Lanes	2016 AADT	Truck Percent- age (\%)	Posted Speed (mph)
I-205	7.00	0.60 mile east of 10th Street Interchange	4	92,600	6.3	55
I-205	9.12	On Willamette River Bridge (Abernethy Bridge), 0.30 mile northeast of Oswego Highway (OR43) Interchange	6	106,300	6.3	55
OR43	11.07	0.10 mile north of I-205	$2-3$	21,500	2.7	35
OR43	11.34	0.01 mile north of Willamette Falls Drive	4	14,000	2.7	35
OR43	11.43	On Willamette River Bridge (Aka Oregon City Arch Bridge)	2	15,600	2.7	25

2.2 Crash History

2.2.1 OR43 from McKillican Street to Willamette Falls Drive (MP 10.88-11.36)

The reported crashes in the segment of OR43 between McKillican Street and Willamette Falls Drive were analyzed for the 5 -year period from 2012 through 2016. The majority of crashes occurred north of the l-205 southbound ramp terminal (60 percent [46 crashes]). Crashes were concentrated at the signalized intersection of OR43 and McKillican Street (MP 10.92) and the minor street stop-controlled T intersection of OR43 at Holly Street (MP 10.99), which is approximately 350 feet south of McKillican Street.

The crash analysis results are summarized below and Table 2 represents crash trends by severity, year and time of day. A detailed listing of the crash data is provided in Appendix A.

- Total Crashes - 76
- Fatal Crashes - None
- Serious Injury Crashes - One serious injury crash occurred at the I-205 southbound ramp terminal intersection. A southbound through driver disregarded the signal and hit a westbound vehicle turning left from the exit-ramp.
- Crash Typel Cause - The study segment of OR43 has a high percentage of turn movement crashes (43 percent [33 crashes]). The majority of the turning crashes occurred at intersections with McKillican Street (5 crashes), Holly Street (6 crashes), I-205 southbound exit-ramp (5 crashes), and Willamette Falls Drive (4 crashes). Many of them were caused by drivers who disregarded signal or failed to yield right-of-way.
- Crash Rate - The computed crash rate is 4.04 crashes per million vehicles miles (mvm), which is higher than the statewide average crash rate of 3.20 crashes per mvm. Potential factors attributed to the crashes include visibility of signals, congestion, and driveways at two gas stations just north of the I-205 southbound ramp terminal generating significant amount of traffic volumes.
- Top 10 percent SPIS - None

Table 2. Crash Data Summary

OR43 MP 10.88-11.36		Top 3 Most Frequent Collision Types		
	Total	Turning	Rear End	Sideswipeopposite
Severity				
Number of Fatal Crash	0	0	0	0
Number of Serious Injury Crash	1	1	0	0
Number of Moderate Injury Crash	7	3	1	1
Number of Minor Injury Crash	32	10	16	2
Number of Property Damage Only Crash	36	19	11	3
Total	76	33	28	6
Type and Year				
2012	14	5	7	0
2013	11	4	3	1
2014	15	7	5	1
2015	20	9	7	3
2016	16	8	6	1
Total	76	33	28	6
Time of Day				
Early Morning (12-7)	5	2	1	0
Morning Peak (7-9)	6	4	1	1
Mid-day (9-4)	45	20	17	4
Afternoon Peak (4-6)	12	6	5	0
Evening (6-12)	8	1	4	1
Total	76	33	28	6

2.2.2 OR43 at l-205 Northbound Ramp Terminal

Since a roundabout is proposed to replace the existing signal control at the intersection of OR43 and I-205 northbound ramp terminal, an analysis of the crash history at this intersection was performed to determine current crash trends at the intersection.

There were a total of eleven crashes at the l-205 northbound ramp terminal intersection. The most severe injury type was moderate injury, which resulted from a fixed-object collision involving an intoxicated driver who exceeded the speed limit, ran off the l-205 northbound exit-ramp, and hit a tree. Rear-end (36 percent [4 crashes]) and turning movement (36 percent [4 crashes]) crashes are the top two most frequent collision types at this intersection. Of the four turning crashes, three were caused by a southbound through vehicle on OR43 that disregarded the traffic signal and hit an l-205 northbound exit-ramp vehicle turning left. No pedestrian or bicycle crashes occurred at this intersection. A detailed listing of the crash data is provided in Appendix B.

2.3 2017 Existing Traffic Volumes

Existing weekday AM and PM turning movement counts were collected on OR43 at its intersections with McKillican Street, I-205 southbound ramps, I-205 northbound ramps, and Willamette Falls Drive by ODOT Region 1 Traffic staff in May 2017. The AM and PM peak hours
were determined to occur between 7:30 AM and 8:30 AM and between 4:30 PM and 5:30 PM, respectively. The existing year 2017 AM and PM traffic volumes and lane configurations at the intersections on OR43 are provided in Figure 3.

Figure 3. Existing Year 2017 Traffic Volumes

Traffic analysis of the 2017 existing conditions was performed using Synchro (version 9.2), which is a traffic analysis and signal optimization software that emulates the methodology from the Highway Capacity Manual with SimTraffic serving as its accompanying micro-simulation application. SimTraffic was used to simulate alternatives and provide queue length statistics.

Table 3 provides volume-to-capacity (v / c) ratio, average control delay, and resulting LOS for the four study intersections. The OR43/McKillican Street intersection operates at LOS C. The two interchange ramp terminal intersections operate with moderately low delay while the stop-controlled movement at the Willamette Falls Drive intersection is operating at LOS F and experiences delay exceeding two minutes for the side street approach. The delay for this intersection is primarily influenced by insufficient gaps in southbound OR43 traffic resulting in substantial delay for both right- and left-turning vehicles from Willamette Falls Drive during peak periods, despite having a two-stage median turn lane. Synchro/SimTraffic analysis worksheets are provided in Appendix C.

Table 3. OR43 Interchange Traffic Operations Analysis Results (2017 Existing)

Intersection	Peak Hour	Delay (sec/veh)	LOS	VIC
OR43 at McKillican St	AM	29.0	C	0.83
	PM	32.9	C	0.79
OR43 at I-205 SB Ramp Terminal	AM	17.9	B	0.87
	PM	16.9	B	0.69
OR43 at I-205 NB Ramp Terminal	AM	6.0	A	0.40
	PM	4.7	A	0.33
	AM	>120	F	**

**For unsignalized intersections, the delay is reported for the minor street left turn movement under stop control. Intersection v/c ratio is not reported for unsignalized intersections.

2.4 Design Year 2045 Traffic Volumes

The Metro Regional Travel Demand Models were used to forecast project future year demands. ODOT provided the Metro travel demand Visum models for existing year 2010 and future year 2040 AM and PM peak period conditions. These models encompass freeways, arterials, local streets, and intersections within the Portland region. The future year regional models integrate planned transportation projects outside of the project study area to generate reliable and realistic future volume forecasts. The future year Metro models were reviewed and adjusted with appropriate capacity and lane configurations for the no-build baseline scenario. Future build scenario models were developed by updating the no-build model with the widened I-205 freeway segment between OR99E and Stafford Road. Lane capacity and number of lanes were updated
per the proposed roadway design. Examination of the updated regional models identified that no local streets were missing in either the no-build or build scenarios.

The Difference (Incremental) Method was used to forecast future volumes as recommended by ODOT. This method is best suited to the study area because the other future demand forecasting method, the Growth Method, tends to severely overestimate growth on lower volume roadways. In the Difference Method, future year demand volumes are determined by adding the existing traffic counts and the differences between existing and future model volumes. Design year 2045 traffic volumes were developed through extrapolation using the differences between the 2010 and 2040 travel demand models. After developing the future year volumes, volumes were balanced to obtain a set of cohesive network volumes.

3 Development of Intersection Control Alternatives

Currently, there are two closely spaced I-205 northbound entrance ramps serving OR43, one from OR43 southbound and the other from OR43 northbound. In order to improve freeway safety and operations and accommodate the widened Abernethy Bridge, the I-205 northbound entrance ramp serving OR43 northbound will be removed, and the entrance loop ramp from OR43 southbound will be reconstructed to allow for the left turn movements from OR43 northbound. Two intersection control alternatives were evaluated to accommodate the left turn movements from OR43 northbound to l-205 northbound at the reconstructed northbound ramp terminal. These two alternatives are described below.

3.1 Signal Control

The initial intersection control alternative developed during the early conceptual design phase of the project was a traffic signal. Due to the heavy turning movements, dual left turn lanes were considered on OR43 northbound at its intersection with the l-205 northbound ramp terminal. The existing signal would be replaced to allow for the dual northbound left turn lanes on OR43. Due to the proximity of the adjacent intersections, the intersection of OR43 and Willamette Falls Drive was also assumed to be under signal control. The signal alternative also included a revised lane configuration of the l-205 southbound exit-ramp, through restriping, to accommodate the heavy right turn movement onto OR43 northbound in the existing and future traffic conditions. Figure 4 shows a conceptual design layout of this alternative along with the Design Year 2045 AM and PM peak hour volumes.

Figure 4. Signal Control Alternative - Design Year 2045 Traffic Volumes

3.2 Roundabout

As the project design was advanced, a roundabout alternative at the I-205 northbound ramp terminal was identified for consideration as a potential alternative to address safety and operational concerns related to the signalized intersection concept. The roundabout lane configurations and geometry were developed and refined through collaboration with ODOT Region and Salem Traffic-Roadway staff during the Design Verification Package (DVP) and Draft Design Acceptance Package (DAP) phases. For this alternative, no modification to the lane configuration or traffic control at the intersection of OR43 and Willamette Falls Drive was assumed. Similar to the signal alternative, the roundabout design option also included a revised lane configuration of the I-205 southbound exit-ramp, through restriping, to accommodate the heavy right turn movement onto OR43 northbound in the existing and future traffic conditions. Figure 5 shows the current conceptual design layout of the roundabout along with the Design Year 2045 AM and PM peak hour volumes.

Figure 5. Roundabout Alternative - Design Year 2045 Build Traffic Volumes

4 Intersection Control Evaluation

A traffic capacity analysis was performed to evaluate how each alternative would perform under Design Year 2045 AM and PM peak hour conditions. It should be noted that the existing ramp meter that regulates traffic entering from OR43 southbound will be removed and a new ramp meter will not be installed for the consolidated I-205 northbound entrance ramp under either alternative. This is due to the insufficient ramp meter storage on the realigned entrance ramp to accommodate the high combined traffic demand from OR43 southbound and northbound. Under current conditions the existing ramp meter has been observed to create queuing that extends beyond the entrance loop ramp and onto OR43 southbound. In either design alternative, the queuing related to a ramp metered condition would result in significant queuing into the new intersection, causing safety and operational issues on OR43. In addition to constructing the new third general purpose lane, the project will be extending the northbound auxiliary lane to the combined entrance loop, which will eliminate the existing short merge condition between I-205 and the entrance loop. For these reasons, a ramp meter will not be constructed with this project.

4.1 Capacity Analysis

4.1.1 Signal Control Alternative

Traffic analysis was performed using Synchro (version 9.2) with SimTraffic serving as its accompanying micro-simulation application used to provide queue length statistics. Table 4 provides the average control delay, resulting Level of Service (LOS), and volume-to-capacity (v/c) ratios for the four study intersections under the Design Year 2045 conditions. At the OR43 and I205 northbound ramp terminal, the v/c ratio of 0.79 in the 2045 PM peak hour would exceed the Highway Design Manual (HDM) mobility standard (v/c ratio) of 0.75 , which would require a design exception. Although the intersection will operate at an acceptable level of service from a traffic capacity perspective, the vehicle queue in the northbound inside left turn lane would well exceed the available storage as shown in Table 5. This implies that the queue of left-turning vehicles would extend through the upstream signalized intersection and impact the operations of OR43 and Willamette Falls Drive. Additionally, the short length of the second receiving lane on the I-205 entrance loop ramp would result in a low lane utilization rate for the dual turn lane, further affecting the capacity of the signal option.

Due to its proximity to the I-205 northbound ramp terminal, the OR43/Willamette Falls Drive intersection would have to operate on closely coordinated signal timing. This intersection also experiences heavy northbound left turn demands from OR43, which would result in significant queue lengths, particularly in the AM peak hour. During these peak operating conditions, the combined queue effect of northbound through and northbound left turns would result in a condition that creates extensive queuing beyond the intersections and continue over the Oregon City Arch Bridge and into downtown Oregon City. The long northbound queue would create conflicts with the driveways along OR43 between Willamette Falls Drive and the west end of the Oregon City Arch Bridge. One of the project goals was to maintain or improve existing operations on impacted connections while accommodating the third lane on I-205. Based on these traffic analysis findings, the signalized intersection alternative fails to meet one of the key project objectives of not degrading existing operations of an impacted facility.

Table 4. OR43 Interchange Traffic Operations Analysis Results (2045 Signal Alternative)

Intersection	Peak Hour	Delay (sec/veh)	LOS	vIC
OR43 at McKillican St	AM	34.1	C	0.86
	PM	65.0	E	0.99
OR43 at I-205 SB Ramp Terminal	AM	31.0	C	0.86
	PM	18.1	B	0.78
OR43 at I-205 NB Ramp Terminal	AM	16.7	B	0.66
	PM	21.7	C	0.79
	AM	27.6	C	0.79

Table 5. Design Year 2045 Intersection Operations - Signal Control

	Delay (sec/veh)	LOS	VIC	$95^{\text {th }}$ Percentile Queue (ft)		Available Storage (ft)	
OR43 at l-205 NB Ramp Terminal				NB inside Left Turn Lane	NB Outside Left Turn Lane	NB inside Left Turn Lane	NB Outside Left Turn Lane
2045 AM Peak Hour	16.7	B	0.66	422	352	*75	*220
2045 PM Peak Hour	21.7	C	0.79	252	287	*75	*220
OR43 at Willamette Falls Drive	Delay (sec/veh)	LOS	VIC	$95^{\text {th }}$ Percentile Queue (ft)		Available Storage (ft)	
				NB Left Turn Lane	NB Thru Lane	NB Left Turn Lane	NB Thru Lane
2045 AM Peak Hour	27.6	C	0.79	380	779	200	---
2045 PM Peak Hour	20.4	C	0.71	314	550	200	---

*Physical storage limit before the lane spilled into the adjacent signal at Willamette Falls Drive; total queue extend much further. Red = Queue length longer than available storage length

4.1.2 Roundabout Alternative

Sidra (version 7), which is primarily used to analyze roundabouts, was used to evaluate the OR43/l-205 northbound ramp terminal intersection under the Design Year 2045 Roundabout alternative. The Sidra results are based on Highway Capacity Manual 6 $6^{\text {th }}$ Edition output, which incorporates the latest NCHRP research and methodology for analyzing roundabouts in the U.S.

As part of the concept development for a Roundabout alternative, a single lane entrance ramp with no southbound right turn bypass lane concept was evaluated first. As shown in Table 6, this concept would result in an intersection v/c ratio of 0.95 in the 2045 PM peak hour due to the heavy southbound right turn to $\mathrm{I}-205$ northbound movement. This v/c ratio well exceeds the HDM
mobility standard of 0.75 for Build alternatives. A single northbound lane approaching the roundabout with a southbound right turn bypass lane concept was evaluated next. This concept would also result in a high intersection v/c ratio (0.99) in the 2045 AM peak hour due to the heavy northbound through movement, indicating the intersection would operate at capacity. The Sidra lane configuration layout and traffic capacity analysis results for these two concepts are provided in the Appendix D.

Based on evaluation of the two initial concepts, it was concluded that a southbound right turn bypass lane and a 2-lane northbound approach would be needed in order to achieve an acceptable v/c ratio. Consequently, the conceptual design layout shown in Figure 5 emerged and was selected as the preferred roundabout alternative. Table 6 provides the average control delay, resulting Level of Service (LOS), and volume-to-capacity (v/c) ratios for the intersection of OR43 and I-205 northbound ramp terminal under the Design Year 2045 conditions. As shown, the roundabout would operate at LOS A with very low vehicle delay due to the yield control entry. It also has a low v/c ratio in 2045 AM peak hour while the v/c ratio in the 2045 PM peak hour is slightly higher than the Highway Design Manual mobility standard of 0.75 . As shown in Table 7, the $95^{\text {th }}$ percentile vehicle queues in all the approach lanes are relatively short, ranging from two to nine vehicles (5 feet to 225 feet), indicating the roundabout operations would not impact the corridor immediately upstream from the roundabout intersection.

Table 6. Design Year 2045 Intersection Operations - Roundabout Alternative Lane Configurations

Alternative	OR43 at I-205 NB Ramp Terminal	Delay (sec/veh)	LOS	V/C
Single lane entrance ramp with no southbound right turn bypass lane and with 2 northbound approach lanes	2045 PM Peak Hour	12.6	B	0.95
2 lane entrance ramp with a southbound right turn bypass lane and a single northbound approach lane	2045 AM Peak Hour	12.4	B	0.99
Build Alternative - 2 lane entrance ramp with a southbound bypass lane and with 2 northbound approach lanes	2045 AM Peak Hour	5.4	A	0.49
Build Alternative - 2 lane entrance ramp with a southbound bypass lane and with 2 northbound approach lanes	2045 PM Peak Hour	6.7	A	0.78

Red $=\mathrm{v} / \mathrm{c}$ ratio for roundabout intersection exceeds Highway Design Manual Mobility Standard of 0.75 for Build Alternative.

Table 7. Design Year 2045 Build 95th Percentile Queues at the OR43/I-205 NB Ramp Terminal - Roundabout Alternative

	$95^{\text {th }}$ percentile Queue Length (\# of vehicles - feet)				
OR43 at I-205 NB Ramp Terminal	OR43 SB Right Turn Bypass Lane	OR43 SB Through Lane	Shared right/left Turn Lane on l-205 NB exit-ramp	OR43 NB inside Through Lane	OR43 NB outside Through Lane
2045 AM Peak Hour	0 vehicle	3 veh. - 75'	2 veh. - 50'	3 veh. - 75'	0 vehicle
2045 PM Peak Hour	0 vehicle	9 veh. - 225^{\prime}	2 veh. -50'	3 veh. - 75'	0 vehicle

Synchro/SimTraffic was used to evaluate the operations of the other intersections in the corridor. The analysis results are shown in Table 8 below.

Table 8. OR43 Interchange Traffic Operations Analysis Results (2045) - Roundabout Alternative

Intersection	Peak Hour	Delay (sec/veh)	LOS	VIC
OR43 at McKillican St	AM	74.9	E	0.94
	PM	49.8	D	0.98
OR43 at I-205 SB Ramp Terminal	AM	38.9	D	0.85
	PM	18.6	B	0.77
OR43 at I-205 NB Ramp Terminal	AM	${ }^{*} 5.4$	*A	${ }^{*} 0.49$
	PM	*6.7	*A	${ }^{*} 0.78$

*Traffic operational results from Sidra Analysis
**For unsignalized intersections, the delay is reported for the minor street left turn movement under stop control. Intersection v/c ratio is not reported for unsignalized intersections.

In addition to the Synchro/SimTraffic and Sidra analysis for the study area, Vissim was used to evaluate the operations of vehicles exiting the roundabout in the corridor to ensure they would not be interrupted by queues from downstream intersections. Vissim is a widely-used, behavior-based, multi-purpose traffic micro-simulation program that tracks individual vehicle movements and interactions more realistically than typical Highway Capacity Manual methods. An existing condition Vissim model was developed for the study area, following the guidance in the 2011 ODOT Vissim Protocol. The existing conditions model was qualitatively calibrated based on field observations and served as the basis for developing the Design Year 2045 Build Condition model, which has been reviewed and ratified by ODOT Region 1 Traffic staff for use.

The OR43 southbound right turn movement and the OR43 northbound left turn movement to the reconstructed I-205 northbound entrance loop ramp will operate under free flow condition after exiting the roundabout as the entrance ramp will not have a ramp meter that would otherwise require vehicles to stop, interrupting the roundabout operations. The OR43 northbound through vehicles exiting the roundabout would not be interrupted by the downstream signal at the I-205 southbound ramp terminal as the vehicle queue in the northbound approach lanes to the intersection is determined to be 228 feet and 166 feet in the 2045 AM and PM peak hours, respectively. The available storage for the two northbound through lanes is approximately 610 feet for each of the two northbound through lanes at I-205 southbound ramp terminal. A summary of the Vissim analysis results is provided in the Appendix E.

In regards to the OR43 southbound vehicles exiting the roundabout, the Project Team has identified an existing operational deficiency associated with the downstream signalized intersection at the south end of the Oregon City Arch Bridge, which is approximately $1 / 4$ mile south of the OR43/l-205 northbound ramp terminal and 1,200 feet south of the OR43/Willamette Falls Drive intersection. This condition results in recurring backup of southbound traffic that extends across the Oregon City Arch Bridge and occasionally through the OR43/Willamette Falls Drive and I-205 northbound ramp terminal intersection. Based on site observations, this condition is experienced in the PM peak hour. While operational improvements at the Arch Bridge signal are outside the scope of the Project, a preliminary evaluation of the corridor operations was performed to assess the potential impact of recurring queuing into the roundabout. This analysis was conducted using Vissim by creating a "simulated" southbound queue that extended through the roundabout intersection. Because of the low volume of the l-205 northbound exit-ramp and the fact that the competing left turn movements from OR43 northbound take priority over the OR43 southbound entering traffic, the analysis does not show any significant impact by the Oregon City Arch Bridge signal to the roundabout operations.

One of the main reasons as to why the Oregon City Arch Bridge signal causes a long queue in the southbound direction on OR43 is due to the high right-turning traffic volume (424 vehicles) from Willamette Falls Drive destined to Oregon City in the PM peak hour. To further understand the make-up of the Willamette Falls Drive and Oregon City Arch Bridge traffic, origin-destination (OD) data was obtained from StreetLight Data to determine the origin of these trips. StreetLight OD data revealed that during the PM peak hour, approximately 200 (28.5 percent) of the 701 (277 vph left turn and 424 vph right turn movements) total eastbound approach vehicles accessing the Willamette Falls Drive intersection with OR43 originated from: (i) I-5 north and south, and (ii) Stafford Road north and south of I-205. What this indicates is that (i) some of the I-205 northbound traffic coming from I-5 would rather exit off at the Stafford Road Interchange to access OR43 via Willamette Falls Drive than continue traveling on I-205 mainline and exit off at the OR43 Interchange, and (ii) traffic originated from Stafford Road north and south of I-205 would rather travel on Willamette Falls Drive to access OR43 than enter northbound I-205 at the Stafford Road Interchange and exit off at the OR43 Interchange. This traffic diversion phenomenon, illustrated in Figure 6, is indicative of traffic trying to avoid the severe congestion on I-205 northbound in the 2-lane section between the Stafford Road and OR43 Interchanges in the PM peak period and using Willamette Falls Drive as a by-pass route. Additionally, the StreetLight OD data presented in Figure 7 showed that 71 percent of the Willamette Falls Drive traffic was destined to areas of

Oregon City between OR43 and OR99E and 10\% of the total PM peak period traffic using the Arch Bridge was continuing on to destinations north of the OR99E Interchange area. These conditions were also validated by multiple field observations during congested periods and input received during public outreach events.

Figure 6. Traffic by-passing I-205 NB

Source: StreetLight Data - StreetLight collects massive volume of geospatial information created by mobile phones, GPS devices, connected cars and commercial trucks, fitness trackers, and more.

Figure 7. StreetLight Data for Willamette Falls Drive and OR43

Source: StreetLight Data - StreetLight collects massive volume of geospatial information created by mobile phones, GPS devices, connected cars and commercial trucks, fitness trackers, and more.

To illustrate the congestion on I-205 northbound between the Stafford Road and OR99E Interchanges, traffic speed data for I-205 was obtained from HERE data. The speed data was then aggregated and averaged for weekdays (excluding holidays) in the entire year of 2017. Figure 8 shows the 2017 average weekday speed data for l-205 northbound. As illustrated in the speed contour map, the northbound section between the Stafford Road and OR99E Interchanges experiences 3 hours of congestion in the afternoon between 3:30 PM and 6:30 PM.

Figure 8. I-205 Northbound 2017 Average Weekday Speed Contour

Source: HERE Data - HERE collects billions of GPS data points every day and leverages over 100 different incident sources to provide a robust foundation for traffic services. Information is collected from a variety of devices across the globe including vehicle sensor data, smartphones, PNDs (Provider Network Data System), road sensors, and connected cars.

With the l-205 corridor widening between Stafford Road and OR213, the majority of traffic currently using Willamette Falls Drive to avoid congestion on I-205 is expected to stay on I-205 and exit off the freeway at the OR99E Interchange to access Oregon City instead of exiting off at the Stafford Interchange to head to Willamette Falls Drive. As a result, there would be reduced traffic demand on OR43 southbound across the Oregon City Arch Bridge, alleviating the existing recurring backup of southbound traffic on OR43.

4.2 Safety Performance Comparison

The proposed roundabout control would have fewer conflict points and reduce crash severity due to slower vehicle speeds and differing potential collision types as compared to the signal control. The Federal Highway Administration Crash Modification Factor (CMF) clearinghouse and Highway Safety Manual provide a CMF 0.520 for converting a signal controlled intersection to a single lane or multi-lane roundabout (Clearinghouse CMF ID 225^{1}). It can be estimated that, in the future, the intersection of OR43 and I-205 northbound ramp terminal operating under roundabout control would have 48 percent fewer crashes per year. The 48 percent reduction in crashes would apply to 10 out of the 11 crashes cited in Section 2.2.2 that occurred in the fiveyear 2012-2016 period.

[^0]
5 Preferred Intersection Control Alternative

The roundabout alternative would improve intersection safety in terms of both crash frequency and severity and reduce overall queuing on OR43. It would not create driveway conflicts with queued vehicles on OR43 and degrade existing operations of an impacted facility as the Signal Control Alternative would. The roundabout is consistent with the City of West Linn's long term vision for OR43 as its Transportation System Plan calls for an additional roundabout at the OR43/Willamette Falls Drive intersection. The current design for the roundabout at the I-205 northbound ramp terminal does not preclude any future improvements associated with the City of West Linn Transportation System Plan or the West Linn Water Front Development Plan that is currently in development.

A scale drawing showing the conceptual design of the proposed roundabout with horizontal and vertical geometry and layout elements is provided in Appendix F.

6 Accommodation for other modes of Transportation

6.1 Freight Mobility

The Project Team has had a number of conversations and discussions with the Freight Mobility Advisory Committee early on in the project development phase. The roundabout concept has been vetted through the Committee and has received acceptance to move forward. The current layout is designed for a WB-67 Interstate truck circulating through the roundabout from all approaches. The Oregon City Arch Bridge has weight and size restrictions and Willamette Falls Drive is not a designated truck route. The Motor Carrier Freight Mobility Map identifies OR43 as a Black and Yellow route, indicating that the route is highly restricted to truck and oversize traffic.

6.2 Bicyclist and Pedestrian

There will be significant bike and pedestrian improvements along OR43 within the project limits. ADA ramps will be upgraded at the OR43/I-205 southbound ramp terminal and the OR43/Willamette Falls Drive intersection. A shared-use path will be constructed along the east side of OR43 from the I-205 southbound ramp terminal to Willamette Falls Drive. Way finding signs will be installed to help guide bicyclists and pedestrians to navigate through the corridor. A rectangular rapid flashing beacon is proposed on OR43 at Willamette Falls Drive to enhance pedestrian crossing safety. Bicycles will also be permitted to use the highway shoulders along OR43 and may access through the roundabout.

Due to the dual-lane approaches, crosswalks will not be provided within proposed roundabout. One of the design considerations of the roundabout alternative, however, is that pedestrians at each leg would face the prospect of crossing multiple lanes of traffic to travel across the roundabout. The heavy vehicular movements, particularly from southbound OR43 in addition to the multilane approach and exit conditions involving northbound OR43, would result in conflicts with pedestrian movements. Studies have shown that conflicts between multilane roundabout approaches and crosswalks create a hazard for sight impaired pedestrians as they cannot
effectively determine gaps in traffic. Legally closing the unmarked crosswalks at the roundabout and providing pedestrians a new route will significantly improve safety in the area. Pedestrians within the interchange area will instead use the proposed shared-use path to access safer striped crosswalks at either a signalized intersection or proposed enhanced crossing with a new rectangular rapid flashing beacon. These alternate crossings are within close proximity to the proposed crossing closure and will result in little, if any, out-of-direction travel incurred by closing the crossings. A separate approval request for the crosswalk closure at the proposed roundabout will be submitted to the State Traffic Engineer through the Region Traffic Engineer.

7 Conclusion

The roundabout alternative effectively accommodates the safety, capacity and multimodal needs of the proposed intersection. Compared to the signal control alternative, a roundabout satisfied the following key criteria:

- Provide sufficient capacity and better operational performance for the forecasted movements onto the freeway in both AM and PM peak hours
- Minimize project footprint
- Will not worsen operational conditions to adjacent local streets as compared to the existing conditions
- Providing better safety performance (reductions in crash severity, injuries and in all crashes) due to slower vehicle speeds and fewer conflict points.

Other benefits include reduced pollution, lower traffic noise and fuel use through fewer stops and hard accelerations as well as significant life-cycle cost savings due to no signal equipment installation, power or maintenance costs.

Appendix A Crash Data (2012-2016) for OR43 between McKillican Street and Willamette Falls Drive

Highway 003 MAINLINE, MP 10.88 to 11.36 01/01/2012 to $12 / 31 / 2016$, Both Add and Non-Add mileage

H	R		C																								
	D	C	\bigcirc										PEOPLE														
W	W	\bigcirc	N											INJ	URY		VEH	CLE		VEH	cle	2		VEH	CLE	3	
Y	Y	M	N	MLG	MILE	CRASH				RD	OFF	COLL															ADD
\#	\#	P	\#	TYP	POINT	DATE	TIME	LIGHT	SURF	CH	RD	TYPE	K	A	B	C	TYPE	FR	то	TYPE	FR		то	TYPE	FR	то	VEH
003	1	MN		0	10.88	07/10/2012	12P	DAY	DRY	3	N	REAR	0	0	0	0	01	NW	SE	01	NW		SE				
003	1	MN		0	10.90	08/29/2015	4 P	DAY	WET	3	N	REAR	0	0	0	6	01	SE	NW	01	SE		NW				
003	1	MN		0	10.91	08/07/2014	2 P	DAY	DRY	3	N	REAR	0	0	0	1	01	NW	SE	01	NW		SE				
003	1	MN		0	10.92	06/12/2013	3P	DAY	DRY	1	N	ANGL	0	0	0	0	01	SW	NE	01	NW		SE				
003	1	MN		0	10.92	09/13/2013	5 P	DAY	DRY	1	N	TURN	0	0	0	0	01	NE	SE	01	NW		NE				
003	1	MN		0	10.92	12/09/2013	2 P	DAY	WET	1	N	REAR	0	0	0	0	01	SE	NW	01	SE		NW				
003	1	MN		0	10.92	03/20/2015	12P	DAY	DRY	1	N	REAR	0	0	0	1	01	SE	NW	01	SE		NW				
003	1	MN		0	10.92	03/21/2015	2 P	DAY	DRY	1	N	REAR	0	0	0	1	01	SE	NW	01	SE		NW				
003	1	MN		0	10.92	04/04/2015	3P	DAY	DRY	1	N	TURN	0	0	1	0	01	SE	SW								
003	1	MN		0	10.92	02/07/2016	2 P	DAY	DRY	1	N	TURN	0	0	0	0	01	NE	SE	01	NW		NE				
003	1	MN		0	10.92	02/16/2016	4A	DLIT	WET	1	N	ANGL	0	0	0	1	01	SW	NE	01	NW		SE				
003	1	MN		0	10.92	08/14/2016	1 P	DAY	DRY	1	N	TURN	0	0	0	1	01	NW	SE	01	SE		SW				
003	1	MN		0	10.92	09/23/2016	3P	DAY	DRY	1	N	REAR	0	0	0	0	01	SE	NW	01	SE		NW				
003	1	MN		0	10.92	09/25/2016	12P	DAY	DRY	1	N	TURN	0	0	0	1	01	SE	NW	01	NW		NE				
003	1	MN		0	10.94	04/04/2012	12P	DAY	WET	3	N	SS-M	0	0	0	2	01	SE	NW	01	NW		SE	01	NW	SE	
003	1	MN		0	10.94	08/27/2015	8A	DAY	DRY	3	N	SS-O	0	0	0	0	01	S	N	01	S		N				
003	1	MN		0	10.96	06/05/2012	3 P	DAY	WET	3	N	REAR	0	0	0	4	01	S	N	01	S		N	01	S	N	
003	1	MN		0	10.96	09/14/2015	2P	DAY	DRY	3	N	SS-O	0	0	0	0	05	SE	NW	01	SE		NW				
003	1	MN		0	10.97	09/16/2012	3 P	DAY	DRY	3	N	REAR	0	0	0	0	01	NW	SE	01	NW		SE				
003	1	MN		0	10.99	01/20/2012	4 P	DUSK	WET	1	N	TURN	0	0	0	0	01	SE	NW	01	NE		SE				

Highway 003 MAINLINE, MP 10.88 to 11.36 01/01/2012 to $12 / 31 / 2016$, Both Add and Non-Add mileage

H	R		C																							
	D	C	\bigcirc											PEOPLE												
W	W	\bigcirc	N											INJ	URY		VEH	CLE	1	VEH	ICLE	2	VEH	CLE		
Y	Y	M	N	MLG	MILE	CRASH				RD	OFF	COLL														ADD
\#	\#	P	\#	TYP	POINT	DATE	TIME	LIGHT	SURF	CH	RD	TYPE	K	A	B	C	TYPE	FR	TO	TYPE	FR	TO	TYPE	FR	TO	VEH
303	1	MN		0	10.99	01/09/2014	3 P	DAY	WET	1	N	TURN	0	0	0	1	01	E	SE	01	SE	NW				
003	1	MN		0	10.99	10/21/2014	7A	DLIT	DRY	1	N	TURN	0	0	0	0	01	NE	SE	01	NW	SE				
003	1	MN		0	10.99	12/04/2014	3P	DAY	WET	1	N	TURN	0	0	0	0	01	SE	NW	01	NE	SE				
003	1	MN		0	10.99	07/06/2015	4 P	DAY	DRY	1	N	TURN	0	0	0	0	01	NE	NW	01	SE	NW				
003	1	MN		0	10.99	09/21/2016	6 P	DAY	DRY	1	N	REAR	0	0	0	0	01	NW	SE	01	NW	SE				
003	1	MN		0	10.99	10/03/2016	10A	DAY	DRY	1	N	TURN	0	0	0	0	01	NE	SE	01	NW	SE				
003	1	MN		0	11.01	11/15/2012	3P	DAY	DRY	3	N	REAR	0	0	0	1	01	N	S	01	N	S				
003	1	MN		0	11.03	09/02/2015	2 P	DAY	DRY	3	N	REAR	0	0	0	1	01	SE	NW	01	SE	NW				
003	1	MN		0	11.03	08/03/2016	12P	DAY	DRY	2	N	TURN	0	0	0	0	01	SW	NW	01	NW	NE				
003	1	MN		0	11.04	03/31/2012	12P	DAY	DRY	3	N	REAR	0	0	0	1	01	N	S	01	N	S	01	N	S	
003	1	MN		0	11.04	03/11/2013	4 P	DAY	DRY	2	N	TURN	0	0	0	0	01	NW	SE	01	SW	NW				
003	1	MN		0	11.04	01/10/2015	1 P	DAY	WET	2	N	TURN	0	0	0	0	01	NW	SE	01	SW	NW				
003	1	MN		0	11.05	02/21/2012	4 P	DAY	WET	2	N	TURN	0	0	0	0	01	NE	SE	01	NW	SE				
003	1	MN		0	11.05	10/03/2013	11A	DAY	DRY	3	N	REAR	0	0	0	0	01	SE	NW	01	SE	NW				
003	1	MN		0	11.05	01/06/2016	1 P	DAY	DRY	2	N	TURN	0	0	1	1	01	SE	NW	01	NE	SE				
003	1	MN		0	11.05	03/24/2016	8A	DAWN	DRY	3	N	REAR	0	0	0	0	01	NW	SE	01	NW	SE				
003	1	MN		0	11.05	04/14/2016	9A	DAY	WET	2	N	TURN	0	0	1	0	01	SE	NW	01	NE	SE				
003	1	MN		0	11.06	04/17/2012	3P	DAY	DRY	1	N	TURN	0	0	0	2	01	SW	NW	01	NW	SE				
003	1	MN		0	11.06	05/07/2013	3 P	DAY	DRY	1	N	TURN	0	0	0	0	01	NW	SE	01	SW	NW				
003	1	MN		0	11.06	08/07/2015	11A	DAY	DRY	1	N	TURN	0	0	0	0	01	NW	SE	01	SW	NW				

Highway 003 MAINLINE, MP 10.88 to 11.36 01/01/2012 to $12 / 31 / 2016$, Both Add and Non-Add mileage

H	R		C																							
	D	C	\bigcirc										PEOPLE													
w	W	\bigcirc	N											INJ	URY		VEH	ICLE	1	VEH	ICLE	2	VEH	CLE		
Y	Y	M	N	MLG	MILE	CRASH				RD	OFF	COLL														ADD
\#	\#	P	\#	TYP	POINT	DATE	TIME	LIGHT	SURF	CH	RD	TYPE	K	A	B	C	TYPE	FR	то	TYPE	FR	то	TYPE	FR	то	VEH
303	1	MN		0	11.07	01/31/2013	8A	DAY	WET	2	N	TURN	0	0	0	1	01	SW	NW	01	NW	SE				
003	1	MN		0	11.10	01/26/2012	5 P	UNK	UNK	3	N	REAR	0	0	0	0	01	NW	SE	01	NW	SE				
003	1	MN		0	11.11	05/05/2013	12P	DAY	DRY	3	N	SS-O	0	0	0	0	01	SE	NW	99	SE	NW				
003	1	MN		0	11.11	07/17/2013	9A	DAY	DRY	3	N	REAR	0	0	0	0	99	NW	SE	01	NW	SE	01	NW	SE	
003	1	MN		0	11.11	07/16/2014	5P	DAY	DRY	3	N	REAR	0	0	1	0	01	NW	SE	01	NW	SE				
003	1	MN		0	11.11	05/18/2015	2 P	DAY	DRY	3	N	REAR	0	0	0	1	01	NW	SE	01	NW	SE				
003	1	MN		0	11.13	11/05/2012	9A	DAY	WET	1	N	TURN	0	1	0	0	01	SE	NW	01	NE	SE				
003	1	MN		0	11.13	12/23/2013	9 P	DLIT	WET	1	N	ANGL	0	0	0	0	01	NE	SW	01	NW	SE				
003	1	MN		0	11.13	12/25/2014	6 P	DLIT	WET	1	N	REAR	0	0	0	2	01	NW	SE	01	NW	SE				
003	1	MN		0	11.13	01/09/2015	6A	DLIT	DRY	1	N	TURN	0	0	0	1	01	NW	SE	01	SE	SW				
003	1	MN		0	11.13	04/25/2015	2 P	DAY	DRY	1	N	SS-O	0	0	1	0	01	N	S							
003	1	MN		0	11.13	07/12/2015	3 P	DAY	DRY	1	N	TURN	0	0	0	1	01	SE	NW	01	E	SE				
003	1	MN		0	11.13	09/16/2015	6A	DAWN	WET	1	N	TURN	0	0	0	1	01	NW	SE	01	SE	SW				
003	1	MN		0	11.13	12/02/2015	5 P	DLIT	WET	1	N	TURN	0	0	0	0	01	SE	NW	01	NE	SE				
003	1	MN		0	11.13	01/21/2016	5P	DUSK	DRY	1	N	REAR	0	0	0	1	01	NW	SE	01	NW	SE				
003	1	MN		0	11.14	06/06/2012	10A	DAY	DRY	1	Y	FIX	0	0	1	0	09	SE	SW							
003	1	MN		0	11.14	03/25/2014	5 P	DAY	WET	1	N	ANGL	0	0	0	0	01	E	W	01	N	S				
003	1	MN		0	11.16	08/25/2013	9 P	DARK	UNK	3	Y	FIX	0	0	0	1	01	N	S							
003	1	MN		0	11.27	04/08/2014	10A	DAY	DRY	3	N	SS-O	0	0	0	1	01	SW	NE	01	SW	NE				
003	1	MN		0	11.29	02/11/2014	10A	DAY	WET	1	N	TURN	0	0	0	0	01	NW	NE	01	NE	SW				

Highway 003 MAINLINE, MP 10.88 to 11.36 01/01/2012 to $12 / 31 / 2016$, Both Add and Non-Add mileage

Appendix B Crash Data (2012-2016) for OR43 at I205 NB Exit-Ramp

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DVIISIO

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
Highway 064 CONNECTIONS, MP 8.79 to 8 8.79, Botht Add and Non-Add mileage, 010112012 to $12 / 3112016$
Tomerash DE-CODER V5.1.3 PRC REPORT PRINTABLE EQUIVALENT*M

\#\#CRASH DE-CODER V5.1.3 PRC REPORT PRINTABLE EQUIVALENT****

Appendix C Synchro/SimTraffic Analysis Worksheets

	\Rightarrow		4	4	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*	「		44	个4		
Traffic Volume (vph)	64	187	0	897	339	0	
Future Volume (vph)	64	187	0	897	339	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0		5.0	5.0		
Lane Util. Factor	1.00	1.00		0.95	0.95		
Frpb, ped/bikes	1.00	0.98		1.00	1.00		
Flpb, ped/bikes	1.00	1.00		1.00	1.00		
Frt	1.00	0.85		1.00	1.00		
Flt Protected	0.95	1.00		1.00	1.00		
Satd. Flow (prot)	1719	1512		3539	3438		
Flt Permitted	0.95	1.00		1.00	1.00		
Satd. Flow (perm)	1719	1512		3539	3438		
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	
Adj. Flow (vph)	65	191	0	915	346	0	
RTOR Reduction (vph)	0	164	0	0	0	0	
Lane Group Flow (vph)	65	27	0	915	346	0	
Confl. Peds. (\#/hr)			1			1	
Confl. Bikes (\#/hr)		3				3	
Heavy Vehicles (\%)	5\%	5\%	2\%	2\%	5\%	5\%	
Turn Type	Prot	Perm		NA	NA		
Protected Phases	8			6	2		
Permitted Phases		8					
Actuated Green, G (s)	5.5	5.5		23.4	23.4		
Effective Green, g (s)	5.5	5.5		23.4	23.4		
Actuated g/C Ratio	0.14	0.14		0.60	0.60		
Clearance Time (s)	5.0	5.0		5.0	5.0		
Vehicle Extension (s)	2.3	2.3		4.5	4.2		
Lane Grp Cap (vph)	243	213		2128	2068		
v/s Ratio Prot	c0.04			c0.26	0.10		
v/s Ratio Perm		0.02					
v/c Ratio	0.27	0.13		0.43	0.17		
Uniform Delay, d1	14.9	14.6		4.2	3.4		
Progression Factor	1.00	1.00		1.00	1.00		
Incremental Delay, d2	0.3	0.2		0.2	0.1		
Delay (s)	15.2	14.8		4.4	3.5		
Level of Service	B	B		A	A		
Approach Delay (s)	14.9			4.4	3.5		
Approach LOS	B			A	A		
Intersection Summary							
HCM 2000 Control Delay			6.0		HCM 2000	evel of Service	A
HCM 2000 Volume to Capacity ratio			0.40				
Actuated Cycle Length (s)			38.9		Sum of lost	me (s)	10.0
Intersection Capacity Utilization			38.1\%		CU Level of	Service	A
Analysis Period (min)			15				
c Critical Lane Group							

Intersection: 3: OR43 \& McKillican

Movement	EB	EB	WB	WB	SE	SE	NW	NW	B77	B77
Directions Served	L	TR	L	TR	L	TR	L	TR	T	
Maximum Queue (ft)	84	147	108	90	31	327	209	568	144	71
Average Queue (ft)	27	64	48	23	4	146	58	308	31	18
95th Queue (ft)	64	117	91	67	20	268	170	580	183	147
Link Distance (ft)		206		166		445		534	322	322
Upstream Blk Time (\%)		0	0	0				5	2	1
Queuing Penalty (veh)		0	0	0				44	9	3
Storage Bay Dist (ft)	150		50		180		110			
Storage Blk Time (\%)		0	17	1		4	0	23		
Queuing Penalty (veh)		0	4	1		0	0	16		

Intersection: 4: I-205 SB On Ramp \& I-205 SB Off Ramp \& OR43

Movement	WB	WB	NB	NB	NB	SB	SB	B77
Directions Served	$<$	LR	L	T	T	T	TR	T
Maximum Queue (ft)	184	279	218	203	124	299	331	23
Average Queue (ft)	91	128	101	76	12	100	163	1
95th Queue (ft)	159	241	180	161	70	226	283	21
Link Distance (ft)		1110		288	288	322	322	534
Upstream Blk Time (\%)			0	0	0	0	1	
Queuing Penalty (veh)			0	1	0	0	2	
Storage Bay Dist (ft)	500		180					
Storage BIk Time (\%)			2	1				
Queuing Penalty (veh)			4	2				

Intersection: 5: I-205 NB Off Ramp \& OR43

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	T	T	T	T
Maximum Queue (ft)	84	113	152	123	123	86
Average Queue (ft)	35	52	76	50	38	26
95th Queue (ft)	71	87	131	102	92	69
Link Distance (ft)		849	205	205	185	185
Upstream Blk Time (\%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	225					
Storage Blk Time (\%)						
Queuing Penalty (veh)						

Intersection: 6: OR43 \& Willamette Falls Dr

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	L	T	T	R
Maximum Queue (ft)	149	137	188	69	10	75
Average Queue (ft)	134	62	72	4	0	6
95th Queue (ft)	143	128	141	78	5	50
Link Distance (ft)	128	128		672	205	205
Upstream Blk Time (\%)	84	1		0		0
Queuing Penalty (veh)	153	1		0		0
Storage Bay Dist (ft)			200			
Storage Blk Time (\%)			0			
Queuing Penalty (veh)			3			

\square \square

 $\square \square$
\qquad \longrightarrow \square
 \square \square

HDR	SimTraffic Report Page 2

Intersection: 29: OR43
Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 61:

Movement	NB	NB	SB
Directions Served	T	T	TR
Maximum Queue (ft)	28	28	16
Average Queue (ft)	2	1	1
95th Queue (ft)	26	23	9
Link Distance (ft)	142	142	288
Upstream Blk Time (\%)	0	0	
Queuing Penalty (veh)	0	0	
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 421

	\Rightarrow		4	\uparrow	\dagger	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*	$\stackrel{\square}{7}$	*	\uparrow	4	「	
Traffic Volume (veh/h)	277	424	215	522	456	236	
Future Volume (Veh/h)	277	424	215	522	456	236	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	301	461	234	567	496	257	
Pedestrians				3	3		
Lane Width (ft)				12.0	12.0		
Walking Speed (ft/s)				3.5	3.5		
Percent Blockage				0	0		
Right turn flare (veh)							
Median type				None	TWLTL		
Median storage veh)					2		
Upstream signal (ft)					275		
pX, platoon unblocked	0.91	0.91	0.91				
vC , conflicting volume	1534	499	753				
vC 1 , stage 1 conf vol	496						
vC 2 , stage 2 conf vol	1038						
vCu , unblocked vol	1537	397	677				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	5.4						
tF (s)	3.5	3.3	2.2				
p0 queue free \%	0	22	72				
cM capacity (veh/h)	228	590	830				
Direction, Lane \#	EB 1	EB 2	NB 1	NB 2	SB 1	SB 2	
Volume Total	301	461	234	567	496	257	
Volume Left	301	0	234	0	0	0	
Volume Right	0	461	0	0	0	257	
cSH	228	590	830	1700	1700	1700	
Volume to Capacity	1.32	0.78	0.28	0.33	0.29	0.15	
Queue Length 95th (ft)	403	184	29	0	0	0	
Control Delay (s)	212.9	29.4	11.0	0.0	0.0	0.0	
Lane LOS	F	D	B				
Approach Delay (s) 101	101.9		3.2		0.0		
Approach LOS F							
Intersection Summary							
Average Delay			34.6				
Intersection Capacity Utilization			61.3\%		CU Level	Service	B
Analysis Period (min)			15				

Intersection: 3: OR43 \& McKillican

Movement	EB	EB	WB	WB	SE	SE	NW	NW	B77	B77
Directions Served	L	TR	L	TR	L	TR	L	TR	T	
Maximum Queue (ft)	200	226	166	185	42	499	210	530	67	35
Average Queue (ft)	98	142	158	174	2	389	64	265	5	1
95th Queue (ft)	187	232	187	227	29	575	172	453	60	35
Link Distance (ft)		206		166		445		534	322	322
Upstream Blk Time (\%)	0	5	45	73		22		1	0	0
Queuing Penalty (veh)	0	0	0	0		0		9	0	0
Storage Bay Dist (ft)	150		100		180		110			
Storage Blk Time (\%)	8	10	92	2		36	0	24		
Queuing Penalty (veh)	22	10	78	4		1	3	20		

Intersection: 4: I-205 SB On Ramp \& I-205 SB Off Ramp \& OR43

Movement	WB	WB	NB	NB	NB	SB	SB	B77
Directions Served	$<$	LR	L	T	T	T	TR	T
Maximum Queue (ft)	254	357	100	103	42	362	396	253
Average Queue (ft)	124	160	43	42	3	172	240	19
95th Queue (ft)	207	295	79	89	23	329	371	145
Link Distance (ft)		1110		288	288	322	322	534
Upstream Blk Time (\%)						0	2	0
Queuing Penalty (veh)						3	15	0
Storage Bay Dist (ft)	500		180					
Storage Blk Time (\%)		0						
Queuing Penalty (veh)		0						

Intersection: 5: I-205 NB Off Ramp \& OR43

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	T	T	T	T
Maximum Queue (ft)	56	80	105	130	140	98
Average Queue (ft)	14	36	39	60	56	29
95th Queue (ft)	41	62	82	113	114	72
Link Distance (ft)		849	205	205	185	185
Upstream Blk Time (\%)					0	
Queuing Penalty (veh)				0		
Storage Bay Dist (ft)	225					
Storage Blk Time (\%)						

Intersection: 6: OR 43 \& Willamette Falls Dr

Movement	EB	EB	NB	SB	SB
Directions Served	L	R	L	T	R
Maximum Queue (ft)	145	142	112	6	9
Average Queue (ft)	135	110	50	0	0
95th Queue (ft)	143	166	90	6	6
Link Distance (ft)	128	128		205	205
Upstream Blk Time (\%)	74	7			
Queuing Penalty (veh)	261	24			
Storage Bay Dist (ft)			200		
Storage Blk Time (\%)					

\square
 " $\square \square$.

HDR	SimTraffic Report
Page 2	

	4		4			\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	${ }^{1}$	T	${ }^{7}$	4	4	「	
Traffic Volume (vph)	270	246	555	950	457	215	
Future Volume (vph)	270	246	555	950	457	215	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.85	1.00	1.00	1.00	0.85	
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00	
Satd. Flow (prot)	1770	1583	1787	1881	1827	1532	
Flt Permitted	0.95	1.00	0.28	1.00	1.00	1.00	
Satd. Flow (perm)	1770	1583	535	1881	1827	1532	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	284	259	584	1000	481	226	
RTOR Reduction (vph)	0	210	0	0	0	81	
Lane Group Flow (vph)	284	49	584	1000	481	145	
Confl. Bikes (\#/hr)						3	
Heavy Vehicles (\%)	2\%	2\%	1\%	1\%	4\%	4\%	
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm	
Protected Phases	8		1	6	2		
Permitted Phases		8	6			2	
Actuated Green, G (s)	21.0	21.0	81.0	81.0	44.0	44.0	
Effective Green, g (s)	21.0	21.0	81.0	81.0	44.0	44.0	
Actuated g/C Ratio	0.19	0.19	0.74	0.74	0.40	0.40	
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Vehicle Extension (s)	2.5	2.5	2.5	2.5	2.5	2.5	
Lane Grp Cap (vph)	337	302	769	1385	730	612	
v/s Ratio Prot	c0.16		0.23	c0.53	0.26		
v/s Ratio Perm		0.03	c0.33			0.09	
v/c Ratio	0.84	0.16	0.76	0.72	0.66	0.24	
Uniform Delay, d1	42.9	37.2	19.7	8.2	26.9	21.9	
Progression Factor	1.00	1.00	1.00	1.00	1.23	1.66	
Incremental Delay, d2	16.9	0.2	4.1	3.3	3.9	0.8	
Delay (s)	59.8	37.4	23.8	11.5	37.1	37.0	
Level of Service	E	D	C	B	D	D	
Approach Delay (s)	49.1			16.0	37.1		
Approach LOS	D			B	D		
Intersection Summary							
HCM 2000 Control Delay			27.6		M 2000	evel of Service	C
HCM 2000 Volume to Capacity ratio			0.79				
Actuated Cycle Length (s)			110.0		m of los	ime (s)	12.0
Intersection Capacity Utilization			79.8\%		Level	Service	D
Analysis Period (min)			15				
C Critical Lane Group							

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{*}$	「	\cdots	4	4	「'
Traffic Volume (vph)	120	192	388	833	480	596
Future Volume (vph)	120	192	388	833	480	596
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	0.97	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.97	1.00	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.85	1.00	1.00	1.00	0.85
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00
Satd. Flow (prot)	1719	1499	3433	1863	1810	1538
Flt Permitted	0.95	1.00	0.95	1.00	1.00	1.00
Satd. Flow (perm)	1719	1499	3433	1863	1810	1538
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	122	196	396	850	490	608
RTOR Reduction (vph)	0	0	0	0	0	0
Lane Group Flow (vph)	122	196	396	850	490	608
Confl. Peds. (\#/hr)			1			1
Confl. Bikes (\#/hr)		3				3
Heavy Vehicles (\%)	5\%	5\%	2\%	2\%	5\%	5\%
Turn Type	Prot	Perm	Prot	NA	NA	pt+ov
Protected Phases	8		1	6	2	28
Permitted Phases		8				
Actuated Green, G (s)	22.8	22.8	22.0	79.2	53.2	80.0
Effective Green, g (s)	22.8	22.8	22.0	79.2	53.2	80.0
Actuated g/C Ratio	0.21	0.21	0.20	0.72	0.48	0.73
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	
Vehicle Extension (s)	2.5	2.5	2.5	2.5	2.5	
Lane Grp Cap (vph)	356	310	686	1341	875	1118
v/s Ratio Prot	0.07		0.12	c0.46	0.27	0.40
v/s Ratio Perm		c0.13				
v/c Ratio	0.34	0.63	0.58	0.63	0.56	0.54
Uniform Delay, d1	37.2	39.8	39.8	7.9	20.1	6.8
Progression Factor	1.00	1.00	1.00	1.18	0.25	0.47
Incremental Delay, d2	0.4	3.7	2.4	1.5	1.6	0.2
Delay (s)	37.6	43.4	42.2	10.9	6.6	3.4
Level of Service	D	D	D	B	A	A
Approach Delay (s)	41.2			20.8	4.8	
Approach LOS	D			C	A	

Intersection Summary			
HCM 2000 Control Delay	16.7	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.66		12.0
Actuated Cycle Length (s)	110.0	Sum of lost time (s)	B
Intersection Capacity Utilization	57.2%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

Intersection: 5: OR43 \& McKillican

Movement	EB	EB	WB	WB	SE	SE	NW	NW	B77	B77
Directions Served	L	TR	L	TR	L	TR	L	TR	T	
Maximum Queue (ft)	206	226	165	197	182	504	200	601	254	267
Average Queue (ft)	64	166	115	81	14	397	57	269	80	68
95th Queue (ft)	181	263	184	208	98	590	153	549	212	207
Link Distance (ft)		206		166		445		534	322	322
Upstream Blk Time (\%)	0	21	12	16		37		3	0	0
Queuing Penalty (veh)	0	0	0	0		0		30	0	2
Storage Bay Dist (ft)	150		100		180		110			
Storage Blk Time (\%)	0	32	45	1		43	2	17		
Queuing Penalty (veh)	0	13	11	1		3	17	12		

Intersection: 6: I-205 SB On Ramp \& I-205 SB Off Ramp \& OR43

Movement	WB	WB	NB	NB	NB	SB	SB	B77
Directions Served	$<\mathrm{L}$	R	L	T	T	T	TR	T
Maximum Queue (ft)	363	423	280	772	820	376	406	532
Average Queue (ft)	176	128	279	734	751	274	344	259
95th Queue (ft)	346	325	289	828	992	406	461	655
Link Distance (ft)		1108		750	750	322	322	534
Upstream Blk Time (\%)				23	43	5	27	9
Queuing Penalty (veh)				111	203	26	152	98
Storage Bay Dist (ft)	540		180					
Storage Blk Time (\%)	1	0	81	3				
Queuing Penalty (veh)	4	0	181	15				

Intersection: 8: OR43 \& Willamette Falls Dr

Movement	EB	EB	NB	NB	SB	SB		
Directions Served	L	R	L	T	T	R		
Maximum Queue (ft)	470	255	300	708	359	213		
Average Queue (ft)	308	109	282	676	313	133		
95th Queue (ft)	495	211	380	779	382	302		
Link Distance (ft)	458	458		666	277			
Upstream Blk Time (\%)	8	0		63	47			
Queuing Penalty (veh)	20	0		0	313			
Storage Bay Dist (ft)			200			113		
Storage Blk Time (\%)			12	65	48			Queuing Penalty (veh)
:---								

Intersection: 10: Willamette Falls Dr \& W A St

Movement	EB	EB	WB	WB	SB
Directions Served	LT	T	T	TR	LR
Maximum Queue (ft)	228	79	21	52	246
Average Queue (ft)	74	5	1	2	85
95th Queue (ft)	178	54	21	28	252
Link Distance (ft)	593	593	458	458	585
Upstream Blk Time (\%)					2
Queuing Penalty (veh)					0
Storage Bay Dist (ft)					
Storage Blk Time (\%)					

Intersection: 22: I-205 NB Off Ramp

Movement	EB
Directions Served	T
Maximum Queue (ft)	307
Average Queue (ft)	57
95th Queue (ft)	271
Link Distance (ft)	502
Upstream Blk Time (\%)	2
Queuing Penalty (veh)	0
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	

Intersection: 3005: I-205 NB Off Ramp \& OR43

Movement	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	R	L	L	T	T	R
Maximum Queue (ft)	226	248	356	277	316	786	735
Average Queue (ft)	119	127	250	235	276	590	276
95th Queue (ft)	217	287	422	352	356	949	847
Link Distance (ft)	241	241	277	277	277	750	750
Upstream Blk Time (\%)	2	11	17	15	35	20	4
Queuing Penalty (veh)	4	17	69	62	142	109	19
Storage Bay Dist (ft)							
Storage Blk Time (\%)							
Queuing Penalty (veh)							
Network Summary							
Network wide Queuing P	2209						

HDR	Sim Traffic Report Page 2

Intersection: 5: OR43 \& McKillican

Movement	EB	EB	WB	WB	SE	SE	NW	NW	B77	B77
Directions Served	L	TR	L	TR	L	TR	L	TR	T	
Maximum Queue (ft)	206	256	166	185	150	498	210	608	329	346
Average Queue (ft)	157	226	154	173	9	426	102	440	172	175
95th Queue (ft)	284	243	184	214	79	616	211	773	359	389
Link Distance (ft)		206		166		445		534	322	322
Upstream Blk Time (\%)	2	87	34	79		37		14	1	3
Queuing Penalty (veh)	0	0	0	0		0		156	5	16
Storage Bay Dist (ft)	150		100		180		110			
Storage Blk Time (\%)	5	91	88	25		39	13	23		
Queuing Penalty (veh)	16	99	75	41		1	140	19		

Intersection: 6: I-205 SB On Ramp \& I-205 SB Off Ramp \& OR43

Movement	WB	WB	NB	NB	NB	SB	SB	B77
Directions Served	$<\mathrm{L}$	R	L	T	T	T	TR	T
Maximum Queue (ft)	550	854	239	230	188	307	401	543
Average Queue (ft)	289	293	125	95	90	148	358	277
95th Queue (ft)	520	729	221	185	155	255	455	647
Link Distance (ft)		1108		736	736	322	322	534
Upstream Blk Time (\%)		1				0	24	2
Queuing Penalty (veh)		0				1	169	34
Storage Bay Dist (ft)	540		180					
Storage Blk Time (\%)	1	4	6	0				
Queuing Penalty (veh)	11	11	6	0				

Intersection: 8: OR43 \& Willamette Falls Dr

Movement	EB	EB	NB	NB	SB	SB		
Directions Served	L	R	L	T	T	R		
Maximum Queue (ft)	302	390	299	517	286	213		
Average Queue (ft)	158	197	183	220	249	124		
95th Queue (ft)	261	331	305	458	316	296		
Link Distance (ft)	458	458		666	263			
Upstream Blk Time (\%)		0		1	10			
Queuing Penalty (veh)		0		0	89			
Storage Bay Dist (ft)			200			113		
Storage Blk Time (\%)			13	4	41			Queuing Penalty (veh)
:---								

Intersection: 10: Willamette Falls Dr \& W A St

Movement	EB	EB	WB	SB
Directions Served	LT	T	TR	LR
Maximum Queue (ft)	115	15	2	511
Average Queue (ft)	36	1	0	184
95th Queue (ft)	88	10	2	425
Link Distance (ft)	593	593	458	585
Upstream Blk Time (\%)				2
Queuing Penalty (veh)				0
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 22: I-205 NB Off Ramp

Movement	EB
Directions Served	T
Maximum Queue (ft)	124
Average Queue (ft)	17
95th Queue (ft)	109
Link Distance (ft)	502
Upstream Blk Time (\%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	

Intersection: 3005: I-205 NB Off Ramp \& OR43

Movement	EB	EB	NB	NB	NB	SB	SB	SB
Directions Served	L	R	L	L	T	T	T	R
Maximum Queue (ft)	150	237	243	272	275	756	772	600
Average Queue (ft)	31	140	168	184	112	495	501	352
95th Queue (ft)	97	241	240	254	246	789	813	717
Link Distance (ft)		228		263	263	736	736	
Upstream Blk Time (\%)	0	6	0	0	0	3	5	
Queuing Penalty (veh)	0	13	0	2	2	23	35	
Storage Bay Dist (ft)	225		145					500
Storage Blk Time (\%)	0	7	11	22			26	1
Queuing Penalty (veh)	0	2	29	57			220	3

Network Summary

Network wide Queuing Penalty: 1475

HDR	Sim Traffic Report

	\rangle	$\stackrel{7}{7}$	4	4	\downarrow	\checkmark	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*	「	\%	\uparrow	\uparrow	「	
Traffic Volume (veh/h)	270	246	555	950	457	215	
Future Volume (Veh/h)	270	246	555	950	457	215	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	284	259	584	1000	481	226	
Pedestrians				3	3		
Lane Width (ft)				12.0	12.0		
Walking Speed (ft/s)				3.5	3.5		
Percent Blockage				0	0		
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume	2652	484	481				
vC 1 , stage 1 conf vol							
vC 2 , stage 2 conf vol							
vCu , unblocked vol	2652	484	481				
tC , single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free \%	0	55	46				
cM capacity (veh/h)	12	581	1087				
Direction, Lane \#	EB 1	EB 2	NB 1	NB 2	SB 1	SB 2	
Volume Total	284	259	584	1000	481	226	
Volume Left	284	0	584	0	0	0	
Volume Right	0	259	0	0	0	226	
cSH	12	581	1087	1700	1700	1700	
Volume to Capacity	24.32	0.45	0.54	0.59	0.28	0.13	
Queue Length 95th (ft)	Err	57	83	0	0	0	
Control Delay (s)	Err	16.1	12.1	0.0	0.0	0.0	
Lane LOS	F	C	B				
Approach Delay (s)	5237.3		4.5		0.0		
Approach LOS	F						
Intersection Summary							
Average Delay			1006.0				
Intersection Capacity Utilization			79.8\%				D
Analysis Period (min)			15	ICU Level of Service			

Intersection: 5: OR43 \& McKillican

Movement	EB	EB	WB	WB	SE	SE	NW	NW	B77	B77
Directions Served	L	TR	L	TR	L	TR	L	TR	T	
Maximum Queue (ft)	162	223	157	159	202	503	209	641	320	323
Average Queue (ft)	43	135	82	38	12	460	74	514	173	172
95th Queue (ft)	118	222	145	112	92	528	191	749	376	396
Link Distance (ft)		206		166		445		534	322	322
Upstream Blk Time (\%)	0	3	0	1		56		21	1	3
Queuing Penalty (veh)	0	0	0	0		0		223	7	17
Storage Bay Dist (ft)	150		100		180		110			
Storage Blk Time (\%)	0	9	10	0		54	1	33		
Queuing Penalty (veh)	0	4	3	0		4	9	24		

Intersection: 6: I-205 SB On Ramp \& I-205 SB Off Ramp \& OR43

Movement	WB	WB	NB	NB	NB	SB	SB	B77
Directions Served	$<\mathrm{L}$	R	L	T	T	T	TR	T
Maximum Queue (ft)	443	635	358	446	365	388	417	546
Average Queue (ft)	152	242	246	212	147	306	359	270
95th Queue (ft)	345	563	368	387	295	404	449	652
Link Distance (ft)		1108		669	669	322	322	534
Upstream Blk Time (\%)		0		0	0	6	26	3
Queuing Penalty (veh)		0		0	0	33	145	29
Storage Bay Dist (ft)	540		270					
Storage Blk Time (\%)		3	19	8				
Queuing Penalty (veh)		5	42	39				

Intersection: 8: OR43 \& Willamette Falls Dr

Movement	EB	EB	NB	NB	SB
Directions Served	L	R	L	T	T
Maximum Queue (ft)	500	496	289	505	24
Average Queue (ft)	466	232	139	30	1
95th Queue (ft)	482	580	251	235	11
Link Distance (ft)	458	458		666	182
Upstream Blk Time (\%)	92	17		0	
Queuing Penalty (veh)	237	43		0	
Storage Bay Dist (ft)			200		
Storage Blk Time (\%)			4	0	
Queuing Penalty (veh)			38	0	

Queuing and Blocking Report
Future Roundabout Build 7:00 to 8:00 AM
Intersection: 10: Willamette Falls Dr \& W A St

Movement	EB	EB	WB	WB	SB
Directions Served	LT	T	T	TR	LR
Maximum Queue (ft)	638	626	84	95	603
Average Queue (ft)	607	607	7	8	582
95th Queue (ft)	628	624	82	86	626
Link Distance (ft)	593	593	458	458	585
Upstream Blk Time (\%)	98	95	0	0	96
Queuing Penalty (veh)	0	0	0	0	0
Storage Bay Dist (ft)					

Intersection: 22: I-205 NB Off Ramp

Movement	EB
Directions Served	T
Maximum Queue (ft)	18
Average Queue (ft)	1
95th Queue (ft)	13
Link Distance (ft)	502
Upstream Blk Time (\%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	

Intersection: 3005: I-205 NB Off Ramp \& OR43

Movement	EB	NB	NB	SB	SB
Directions Served	LR	LT	T	T	R
Maximum Queue (ft)	151	182	191	141	89
Average Queue (ft)	61	63	16	32	3
95th Queue (ft)	117	143	95	102	74
Link Distance (ft)	161	182	182	669	669
Upstream Blk Time (\%)	0	0	0		0
Queuing Penalty (veh)	1	1	1	0	
Storage Bay Dist (ft)					
Storage Bk Time (\%)					
Queuing Penalty (veh)					
Network Summary					
Network wide Queuing Penalty: 907					

HDR	SimTraffic Report
Page 2	

	\rangle	\geqslant	4	4	\downarrow	\checkmark	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	\%	「	\%	\uparrow	\uparrow	「	
Traffic Volume (veh/h)	278	499	320	594	594	265	
Future Volume (Veh/h)	278	499	320	594	594	265	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	293	525	337	625	625	279	
Pedestrians				3	3		
Lane Width (ft)				12.0	12.0		
Walking Speed (ft/s)				3.5	3.5		
Percent Blockage				0	0		
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume	1927	628	625				
vC 1 , stage 1 conf vol							
vC 2 , stage 2 conf vol							
vCu , unblocked vol	1927	628	625				
tC , single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free \%	0	0	65				
cM capacity (veh/h)	47	481	956				
Direction, Lane \#	EB 1	EB 2	NB 1	NB 2	SB 1	SB 2	
Volume Total	293	525	337	625	625	279	
Volume Left	293	0	337	0	0	0	
Volume Right	0	525	0	0	0	279	
cSH	47	481	956	1700	1700	1700	
Volume to Capacity	6.20	1.09	0.35	0.37	0.37	0.16	
Queue Length 95th (ft)	Err	425	40	0	0	0	
Control Delay (s)	Err	96.7	10.8	0.0	0.0	0.0	
Lane LOS	F	F	B				
Approach Delay (s)	3643.6		3.8		0.0		
Approach LOS	F						
Intersection Summary							
Average Delay			1111.8				
Intersection Capacity Utilization			74.4\%	ICU Level of Service			D
Analysis Period (min)			15				

Intersection: 5: OR43 \& McKillican

Movement	EB	EB	WB	WB	SE	SE	NW	NW	B77	B77
Directions Served	L	TR	L	TR	L	TR	L	TR	T	
Maximum Queue (ft)	206	249	166	185	72	500	209	611	310	335
Average Queue (ft)	157	226	155	172	5	400	95	418	117	109
95th Queue (ft)	290	240	181	218	52	628	196	744	283	297
Link Distance (ft)		206		166		445		534	322	322
Upstream Blk Time (\%)	2	86	33	79		20		10	0	1
Queuing Penalty (veh)	0	0	0	0		0		115	0	4
Storage Bay Dist (ft)	150		100		180		110			
Storage Blk Time (\%)	4	89	87	25		27	11	22		
Queuing Penalty (veh)	12	97	74	41		1	112	18		

Intersection: 6: I-205 SB On Ramp \& I-205 SB Off Ramp \& OR43

Movement	WB	WB	NB	NB	NB	SB	SB	B77
Directions Served	$<\mathrm{L}$	R	L	T	T	T	TR	T
Maximum Queue (ft)	433	475	184	161	169	352	392	185
Average Queue (ft)	226	181	92	74	79	221	262	14
95th Queue (ft)	407	433	162	131	135	365	386	109
Link Distance (ft)		1108		669	669	322	322	534
Upstream Blk Time (\%)		0				1	2	
Queuing Penalty (veh)		0				5	14	
Storage Bay Dist (ft)	540		180					
Storage Blk Time (\%)	0	1	1	0				
Queuing Penalty (veh)	1	2	1	0				

Intersection: 8: OR43 \& Willamette Falls Dr

Movement	EB	EB	NB	NB	SB
Directions Served	L	R	L	T	T
Maximum Queue (ft)	493	509	207	40	39
Average Queue (ft)	467	370	89	1	3
95th Queue (ft)	482	647	159	30	19
Link Distance (ft)	458	458		666	182
Upstream Blk Time (\%)	85	31			
Queuing Penalty (veh)	332	121			
Storage Bay Dist (ft)			200		
Storage Blk Time (\%)			1	0	
Queuing Penalty (veh)			4	0	

Intersection: 10: Willamette Falls Dr \& W A St

Movement	EB	EB	WB	WB	SB
Directions Served	LT	T	T	TR	LR
Maximum Queue (ft)	641	649	68	99	613
Average Queue (ft)	595	593	4	5	587
95th Queue (ft)	719	739	45	55	659
Link Distance (ft)	593	593	458	458	585
Upstream Blk Time (\%)	88	86			97
Queuing Penalty (veh)	0	0			0
Storage Bay Dist (ft)					

Intersection: 22: I-205 NB Off Ramp

Movement

Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)
Intersection: 3005: I-205 NB Off Ramp \& OR43

Movement	EB	NB	NB	SB	SB
Directions Served	LR	LT	T	T	R
Maximum Queue (ft)	83	165	56	214	8
Average Queue (ft)	36	37	2	51	0
95th Queue (ft)	76	112	35	142	6
Link Distance (ft)	161	182	182	669	669
Upstream Blk Time (\%)		0	0		
Queuing Penalty (veh)		0	0		
Storage Bay Dist (ft)					
Storage Blk Time (\%)					
Queuing Penalty (veh)					

Network Summary
Network wide Queuing Penalty: 954

HDR	SimTraffic Report
Page 2	

Appendix D Sidra Roundabout Analysis Worksheets

SITE LAYOUT

Site: 101 [1 lane onramp 2045 PM (adopted)]
New Site
Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR | Created: Friday, August 10, 2018 11:25:30 AM
Project: c:lpwworkinglwest01\d0683504\Sidra Roundabout_OR43_exitramp_20180718.sip7

MOVEMENT SUMMARY

Site: 101 [1 lane onramp 2045 PM (adopted)]

New Site
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
8	T1	709	2.0	0.783	10.1	LOS A	8.1	206.7	0.90	1.12	30.7
18	R2	857	2.0	0.946	20.7	LOS D	18.4	468.4	1.00	1.56	24.7
Appro		1566	2.0	0.946	15.9	LOS B	18.4	468.4	0.96	1.36	27.2
NorthWest: I-205 Exit Ramp to OR43											
1	L2	31	0.0	0.273	14.0	LOS A	1.2	29.8	0.66	0.82	35.2
16	R2	166	0.0	0.273	7.6	LOS A	1.2	29.8	0.66	0.82	34.6
Appro		197	0.0	0.273	8.5	LOS A	1.2	29.8	0.66	0.82	34.7
SouthWest: OR43											
7	L2	540	3.0	0.382	10.2	LOS A	2.2	57.1	0.15	0.61	35.0
4	T1	350	3.0	0.182	3.7	LOS A	0.0	0.0	0.00	0.34	38.3
Approach		890	3.0	0.382	7.7	LOS A	2.2	57.1	0.09	0.51	36.0
All Ve	cles	2653	2.2	0.946	12.6	LOS B	18.4	468.4	0.64	1.04	30.6

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: US HCM 6.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

G Site: 101

[2 lane onramp 2045 AM NB 1 lane test]
New Site
Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR | Created: Monday, August 13, 2018 8:56:14 AM
Project: c:\pwworkinglwest01\d0683504\Sidra Roundabout_OR43_exitramp_20180718.sip7

MOVEMENT SUMMARY

Gite: 101 [2 lane onramp 2045 AM NB 1 lane test]

New Site
Roundabout

Movement Performance - Vehicles											
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
NorthEast: OR43											
8	T1	490	5.0	0.488	4.8	LOS A	2.7	71.0	0.61	0.53	32.6
18	R2	608	5.0	0.381	2.5	LOS A	0.0	0.0	0.00	0.34	33.6
Appro		1098	5.0	0.488	3.6	LOS A	2.7	71.0	0.27	0.42	33.1
NorthWest: I-205 Exit Ramp to OR43											
1	L2	122	5.0	0.379	13.0	LOS A	1.8	47.2	0.63	0.81	34.4
16	R2	196	5.0	0.379	6.6	LOS A	1.8	47.2	0.63	0.81	34.3
Appro		318	5.0	0.379	9.1	LOS A	1.8	47.2	0.63	0.81	34.3
SouthWest: OR43											
7	L2	396	2.0	0.991	25.3	LOS E	44.2	1122.9	1.00	0.91	30.4
4	T1	850	2.0	0.991	18.9	LOS E	44.2	1122.9	1.00	0.91	28.1
Approach		1246	2.0	0.991	21.0	LOS C	44.2	1122.9	1.00	0.91	28.9
All Vehicles		2662	3.6	0.991	12.4	LOS B	44.2	1122.9	0.66	0.70	31.1

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).
Roundabout Capacity Model: US HCM 6.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: 101 [2 lane onramp 2045 AM (adopted)]
New Site
Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR | Created: Friday, August 10, 2018 11:46:24 AM
Project: c:\pwworkinglwest01\d0683504\Sidra Roundabout_OR43_exitramp_20180718.sip7

MOVEMENT SUMMARY

Site: 101 [2 lane onramp 2045 AM (adopted)]

New Site
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles \qquad	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
NorthEast: OR43											
8	T1	490	5.0	0.488	4.8	LOS A	2.7	71.0	0.61	0.53	32.6
18	R2	608	5.0	0.381	2.5	LOS A	0.0	0.0	0.00	0.34	33.6
Appro		1098	5.0	0.488	3.6	LOS A	2.7	71.0	0.27	0.42	33.1
NorthWest: I-205 Exit Ramp to OR43											
1	L2	122	5.0	0.379	13.0	LOS A	1.8	47.2	0.63	0.81	34.4
16	R2	196	5.0	0.379	6.6	LOS A	1.8	47.2	0.63	0.81	34.3
Approach		318	5.0	0.379	9.1	LOS A	1.8	47.2	0.63	0.81	34.3
SouthWest: OR43											
7	L2T1	396	2.0	0.384	10.7	LOS A	2.2	54.8	0.34	0.60	35.3
4		850	2.0	0.384	3.8	LOS A	2.2	54.8	0.04	0.38	37.7
Approach		1246	2.0	0.384	6.0	LOS A	2.2	54.8	0.14	0.45	36.8
All Vehicles		2662	3.6	0.488	5.4	LOS A	2.7	71.0	0.25	0.48	35.0

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: US HCM 6.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Gite: 101 [2 lane onramp 2045 PM (adopted)]
New Site
Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR | Created: Friday, August 10, 2018 11:25:05 AM
Project: c:lpwworkinglwest01\d0683504\Sidra Roundabout_OR43_exitramp_20180718.sip7

MOVEMENT SUMMARY

Site: 101 [2 lane onramp 2045 PM (adopted)]

New Site
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
8	T1	709	2.0	0.783	10.1	LOS A	8.1	206.7	0.90	1.12	30.7
18	R2	857	2.0	0.522	2.5	LOS A	0.0	0.0	0.00	0.34	33.6
Appro		1566	2.0	0.783	6.0	LOS A	8.1	206.7	0.41	0.69	32.2
NorthWest: I-205 Exit Ramp to OR43											
1	L2	31	0.0	0.273	14.0	LOS A	1.2	29.8	0.66	0.82	35.2
16	R2	166	0.0	0.273	7.6	LOS A	1.2	29.8	0.66	0.82	34.6
Appro		197	0.0	0.273	8.5	LOS A	1.2	29.8	0.66	0.82	34.7
SouthWest: OR43											
7	L2	540	3.0	0.382	10.2	LOS A	2.2	57.1	0.15	0.61	35.0
4	T1	350	3.0	0.182	3.7	LOS A	0.0	0.0	0.00	0.34	38.3
Approach		890	3.0	0.382	7.7	LOS A	2.2	57.1	0.09	0.51	36.0
All Ve	cles	2653	2.2	0.783	6.7	LOS A	8.1	206.7	0.32	0.64	33.8

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: US HCM 6.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Appendix E Vissim Analysis Worksheets

* $=$ for EB left turn stop-controlled movement

* $=$ for EB left turn stop-controlled movement

Appendix F Conceptual Design of the Proposed Roundabout

(1) See sht. CO6B, note XX Wor d extg. structure
(For drg. nos., see sht. $X X$)
(2) structure no. $x x x x x$

Sta. " $X X$ " $~$
nXX
Const $X X X X$ to sta. " $X X$ " $X X X+X X . X$, , L. Const. retaining wall
(For drg. nos., see sht. $X X$)
(3) Const. conc. curb
(See drg. no. RD700)
(4) Const. type "X" conc. island
(See drg. nos. RD705 \& RD710)
(5) Const. P.C. conc. sidewalk (See drg. no. RD725)
(6) Const. perpendicular sidewalk ramp Install truncated domes
(For letails see shts. BCXX-BCXX) (For details see shts., $B C X-B C X X$
(See drg. nos. RD755 \& RD760)
(7) Const. mountable conc. curb
(8) Sta. "XX" $x X X+X X, X$, LL. Const. Sign cantile ver
(For drg. nos. see sht. $X x$)

HDR ENGINEERING, INC
1050 SW TTH AVENUE SUI

1-205: PARK PLACE INTCHGE TO
205: PARK PLACE INTCHGE.
WEST LINN INTCHGE SEC.
EAST PORTLAND FREEWA

Designer. Jason Rahm Drafter: Landon Fisher	$\begin{array}{l}\text { Reviever. John Woff } \\ \text { Checker: Brendan LeBlanc }\end{array}$	
GENERAL CONSTRUCTION NOTES	SHEETNO.	

Rotation: 247.8868° Scale: $1 "=10$

[^0]: ${ }^{1}$ http://www.cmfclearinghouse.org/cmfpdf.cfm?facid=225

